Angular Momentum in QFunity
Exploring Cosmic Rotation, Spin-Field Coupling, and the Zero Principle for a Theory of Everything
1. Introduction: Angular Momentum as a Cosmic Clue
Context and Motivation (January 2026)
Inspired by a discussion on X about a universe rotating every 500 billion years to resolve the Hubble tension, this exploration delves into angular momentum within the QFunity framework. The goal is to unify cosmic rotation, spin-field interactions, and the « Zero Principle » into a testable Theory of Everything (ToE). See the initial post: All day Astronomy Post.
2. QFunity Framework: Angular Momentum and the Zero Principle
Core Concept: Spin-Field Coupling via Φ
QFunity posits a scalar field \( \Phi \) that couples to matter and spin, driven by the « Zero Principle » from QFunity Zero, where no physical quantity reaches zero due to quantum regularization. This leads to an anharmonic potential and long-period oscillations.
Action and Field Dynamics
The action includes the Einstein-Hilbert term, kinetic term for \( \Phi \), and a potential \( V(\Phi) \), with \( S_m \) coupling \( \Phi \) to matter. The variation yields the Klein-Gordon equation: \[ \Box \Phi – \frac{dV}{d\Phi} = \mathcal{J} \] where \( \mathcal{J} \) is the matter coupling current.
Anharmonic Potential \( V(\Phi) \)
The potential is regularized to avoid a perfect minimum: \[ V_{\text{eff}}(\Phi) \approx V_{\text{min}} + \frac{m_\Phi^2 \epsilon^2}{2} \left[ \sqrt{1 + \left(\frac{\Phi – \Phi_0}{\epsilon}\right)^2} – 1 \right] \] where \( \epsilon \sim \hbar/2 \) flattens the potential.
Oscillation Period
For small amplitudes \( \Delta\Phi/\Phi_0 \sim 10^{-8} \) (to respect \( \dot{\alpha}/\alpha < 10^{-17} \, \text{yr}^{-1} \)), the effective period is: \[ T_{\text{eff}} \sim \frac{\Phi_0}{\sqrt{\epsilon} \Delta\Phi} \] With \( \Phi_0 \sim 10^{19} \, \text{GeV} \) and \( \epsilon \sim 10^{-34} \, \text{J·s} \), \( T_{\text{eff}} \) can reach 10-100 years.
3. Spin-Field Coupling and Angular Momentum
Coupling Mechanism
The coupling to spin is defined as: \[ \mathcal{L}_{\text{matter}} = \frac{\Phi}{M_*} \left[ \frac{\beta_g}{2g} G_{\mu\nu} G^{\mu\nu} – \sum_{q=d,s,b} \gamma_q m_q \bar{q}q \right] + \frac{\partial_\mu \Phi}{M_*} \bar{\psi} \gamma^\mu \gamma^5 \psi \] where the axial term induces a spin-dependent interaction: \[ H_{\text{int}} \approx -\frac{1}{M_*} \vec{S} \cdot \vec{\nabla} \Phi \] with \( \lambda \equiv 1/M_* < 10^{-10} \, \text{GeV}^{-1} \) from EDM constraints (arXiv: 2303.01596).
Spin Precession Frequency
The energy shift for an electron (\( S = \hbar/2 \)) is: \[ \Delta E \sim \lambda \cdot |\vec{\nabla} \Phi| \cdot \hbar \] Initially, with \( |\vec{\nabla} \Phi| \sim 10^{-3} \, \text{eV}^2 \), \( \Delta E \sim 10^{-40} \, \text{eV} \) (\( \nu \sim 10^{-16} \, \text{Hz} \)). The anharmonic potential from the « Zero Principle » reduces the required gradient to \( |\vec{\nabla} \Phi| \sim 1 – 10^3 \, \text{eV}^2 \) for \( \nu \sim 10^{-9} \, \text{Hz} \) (period ~30 years).
Angular Momentum of the Universe
In a FLRW universe, total angular momentum is zero by symmetry. QFunity introduces a complex \( \Phi = \phi e^{i\theta} \), yielding: \[ L_{\Phi}^k = \varepsilon^{ijk} \int d^3x \, \phi^2 (\partial_t \theta) (x_i \partial_j \theta) \] For homogeneity (\( \partial_j \theta = 0 \)), \( L_{\Phi} = 0 \), but CMB fluctuations (\( \langle (\delta \rho / \rho)^2 \rangle^{1/2} \sim 10^{-5} \)) may contribute a small, random effect.
Fluctuation Contribution
The order of magnitude is: \[ L_{\text{total}} \propto \langle (\delta \rho / \rho)^2 \rangle \sim 10^{-10} \times \text{naïve value} \approx 0 \] consistent with isotropy.
4. Resolving the Hubble Tension with Cosmic Rotation
Context from X Discussion
The X post (ID: 2007933066862547252) suggests a 500-billion-year rotation resolves the Hubble tension. QFunity adapts this via \( \Phi \)’s oscillations: \[ H_0(\epsilon) \approx H_{0,\Lambda\text{CDM}} \left[ 1 + \beta \left( \frac{\epsilon_0}{\epsilon} \right)^{3 – D_f} \right] \] with \( D_f \approx 2.718 \) and \( \beta \sim 0.065 \).
Torsion Wave Contribution
Residual torsion waves contribute: \[ \delta T_{00}^{\text{(wave)}} = \frac{c^4}{32\pi G} \mathcal{A}^2 \omega^2 \left( \frac{\epsilon_0}{\epsilon} \right)^{3 – D_f} \] enhancing local \( H_0 \).
5. Quantitative Predictions and Experiments
Fuzzy Dark Matter (FDM) Signature
For a 10-year « respiration » period, \( m_{\text{fdm}} \sim 10^{-19} \, \text{eV} \) and \( \lambda_{\text{wave}} \sim 0.06 \, \text{pc} \): \[ m_{\text{fdm}} \approx \frac{\hbar}{v \lambda} \approx \frac{1.05 \times 10^{-34} \, \text{J·s}}{(2.2 \times 10^5 \, \text{m/s}) \cdot (1.8 \times 10^{15} \, \text{m})} \approx 2.6 \times 10^{-55} \, \text{kg} \] Predictions include:
- Lensing: No substructures < 0.1 pc (DOI: 10.1093/mnras/staa3631).
- Dynamics: Homogeneous density < 0.1 pc.
- Interferometry: \( \nu \sim 3.6 \times 10^{-5} \, \text{Hz} \) (period ~8 hours).
Testable with ABRACADABRA/DMRadio
Detect \( \Phi \) oscillations with high-finesse resonators.
Solar System Constants Network (SSCN)
A network of 4-5 optical atomic clocks (e.g., \( ^{87}\text{Sr} \)) across the solar system: \[ \frac{\delta(\nu_{Sr})}{\nu_{Sr}} = K_{Sr}^{\alpha} \frac{\delta\alpha}{\alpha} + K_{Sr}^{m_q} \frac{\delta m_q}{m_q} \] Tests for a 10-year modulation, rejecting systematic effects.
Feasibility
Requires \( \delta\nu/\nu \sim 10^{-18} \), feasible with ACES/SOC (ESA, NASA collaboration, 2030-2045 timeline).
6. Conclusion: A Rotating, Breathing Universe
THE COSMIC BREATH AND SPIN OF QFUNITY
Angular momentum and \( \Phi \)’s oscillations unify the Hubble tension, spin coupling, and cosmic structure within QFunity. The « Zero Principle » provides a novel regularization, predicting testable signatures from FDM to clock networks.
References & External Links
- All day Astronomy (2026) – Universe Rotation Hypothesis
- EDM Constraints on Spin Coupling
- Fuzzy Dark Matter Review
- Di Valentino et al. (2021) – Hubble Tension
- Quantum Regularization in Field Theory
- Constraints on Fine Structure Constant Variation
- Gravitational Lensing Constraints
- QFunity Zero Principle
- QFunity EPT Model
- QFunity Quantum Gravity
- QFunity Hubble Tension Resolution
- QFunity All Solutions