QFunity – Complete List of Proof Requests

QFunity – Complete List of Proof Requests

This page compiles all testable predictions and proof requests from the QFunity framework, grouped by experimental nature (e.g., LHC, LIGO).

LHC (Large Hadron Collider) Predictions

High-Energy Physics Tests

Step 1: Muon g-2 Anomaly

Prediction: Muon g-2 anomaly from non-zero principle, matching Fermilab data: \(\Delta a_\mu \approx 2.5 \times 10^{-9}\).

\[\Delta a_\mu = -2 \cdot \frac{\epsilon^2_{\text{weak}}}{\ell_P^2} \approx 2.5 \times 10^{-9}\]

Link to Zero: The Forbidden Number

Step 2: Non-Local Correlations

Prediction: Non-local correlations at \(\epsilon \sim \ell_P\) in high-energy experiments, indicating EPT interactions.

\[\lambda_{\text{dB}} = \frac{h}{p} \left(1 + \frac{\ell_P^2}{\epsilon^2}\right)^{-1}\]

Link to Wave Nature

Step 3: MET and Soft Photons

Prediction: Missing transverse energy (MET) and soft photons (≥3σ deviation) from micro-EPT nucleation.

\[\nabla \times \Omega_{\text{QF}} = \kappa \rho_{\text{vac}} \mathbf{v} \times \hat{\mathbf{s}}\]

Link to Micro EPTs

Step 4: Vacuum Decay MET Signature

Prediction: MET signature in vacuum decay: \(E_{\text{MET}} = 100–150 \, \text{GeV}\), with \(\chi^2 < 7.81\) (p=0.05).

\[\chi^2 = \sum \frac{(O_i – E_i)^2}{\sigma_i^2} < 7.81 \, (p = 0.05)\]

Link to Vacuum Decay

Step 5: Gauge Unification Evidence

Prediction: Unification of forces at high energies, testable via extra-dimensional signatures at \(\epsilon \sim 10^{16} \, \text{GeV}\).

\[G_{\text{unified}} = \frac{\hbar c}{M_{\text{Planck}}^2} \cdot \left(1 + \frac{\epsilon_{\text{extra}}}{\ell_P}\right)\]

Link to Gauge Unification

External: CERN String Theory

LIGO/Virgo (Gravitational Waves) Predictions

Gravitational Wave Anomalies

Step 1: Black Hole EPT Frequency Shifts

Prediction: \(\epsilon\)-dependent shifts in GW frequencies from black hole mergers.

\[f_{\text{GW}} \propto \frac{\omega}{\epsilon^2}, \quad \Delta f \sim \frac{\partial f_{\text{GW}}}{\partial \epsilon} \Delta \epsilon\]

Link to Black Hole EPT

External: Event Horizon Telescope

Step 2: White Dwarf Merger Torsion

Prediction: Torsion oscillations in white dwarf mergers, detectable with LISA.

\[M_{\text{eff}} = M_{\text{Ch}} \times (1 + \alpha_{\text{QF}} \cdot \omega^2)\]

Link to White Dwarf Mergers

Step 3: Neutron Star Reconfiguration

Prediction: GW anomalies from neutron star phases, detectable with LISA/Chandra.

\[\tau = \hbar / \Delta E_{\text{QF}}\]
  • LISA: \(\delta v/c \sim 10^{-6}\) for \(\kappa=10^{-3}\)
  • Chandra: \(f_{\text{QF}} = \kappa c^3/GM\)

Link to Neutron Star Reconfiguration

JWST (James Webb Space Telescope) Predictions

Cosmic Evolution and Spectral Analysis

Step 1: Spectral Line Broadening

Prediction: Broadening based on observer-scale dependency.

\[\Delta \lambda = \lambda_0 \cdot \left( \frac{\epsilon_{\text{obs}}}{\lambda_0} \right)^{1/3}\]

Link to Observer-Scale Dependency

Step 2: Early Universe Metals

Prediction: Metals at \(z > 10\) from micro-bangs, with Fe/H \(\sim 10^{-4}\).

\[\frac{\text{Fe}}{\text{H}} \sim \exp\left(-\frac{\epsilon_{\text{hadron}}}{\epsilon_{\text{electroweak}}}\right)\]

Link to JWST Discoveries

External: JWST Official Site

Step 3: Vacuum Decay Spectral Shifts

Prediction: \(\epsilon\)-dependent spectral shifts.

\[\Delta \lambda \propto \epsilon^{1/3}\]

Link to Vacuum Decay

Step 4: V883 Orionis Molecules

Prediction: 26 complex organic molecules with enhanced abundance.

\[P_{\text{COM}} \sim \epsilon^{1/3} \times \exp(-E_{\text{bind}}/kT)\]

Spectral signatures at 230 GHz (ALMA) and 10-20 \(\mu\text{m}\) (JWST MIRI)

Link to V883 Orionis

CMB (Cosmic Microwave Background) Predictions

Cosmic Background Signatures

Step 1: B-Mode Polarization

Prediction: Rotational EPT signatures with \(D_f \approx 2.7\).

\[D_f \approx 2.7\]

Link to The Fractal Multiverse

Step 2: Holographic White Noise

Prediction: Low-ℓ spectra with \(\mathcal{P} \lesssim 9 \times 10^{-14}\).

\[\mathcal{P} \lesssim 9 \times 10^{-14}\]

Link to Zero Modes

Step 3: Primordial Monopole

Prediction: Anisotropies with \(d_{\text{max}} \propto Q^{1/4}\).

\[d_{\text{max}} \propto Q^{1/4}\]

Link to Zero Modes

Step 4: Fractal Power Spectrum

Prediction: Spectrum with \(\mathcal{F}_{\text{fractal}}(\ell) \propto \ell^{-3/2} \cdot \cos(2\pi \epsilon \ell / r_H)\).

\[\mathcal{F}_{\text{fractal}}(\ell) \propto \ell^{-3/2} \cdot \cos\left(2\pi \epsilon \ell / r_H\right)\]

Link to Zero Modes

Step 5: Micro-Bang Fluctuations

Prediction: Fluctuations with \(\Delta T/T \sim \epsilon^2\).

\[\Delta T/T \sim \epsilon^2\]

Link to Micro EPTs

Step 6: Echoes of Torsion

Prediction: Anisotropies as echoes of \(\hat{\mathbb{B}}_\epsilon \Psi\).

\[\hat{\mathbb{B}}_\epsilon \Psi\]

Link to JWST Discoveries

IceCube (Neutrino Observatory) Predictions

Neutrino Anomalies

Step 1: Primordial Neutrino Spectra

Prediction: Anomalous energy spectra with \(P(x \in [-\epsilon/2, \epsilon/2]) = \epsilon \cdot \rho(0)\).

\[P(x \in [-\epsilon/2, \epsilon/2]) = \epsilon \cdot \rho(0)\]

Link to Micro EPTs

External: IceCube Observatory

Step 2: Supernova Neutrinos

Prediction: Neutrinos with near-pristine information, \(c’ = \frac{\ell_P \sqrt{\omega_{\text{eff}}’}}{\sqrt{\Lambda}}\).

\[c’ = \frac{\ell_P \sqrt{\omega_{\text{eff}}’}}{\sqrt{\Lambda}}\]

Link to Emergence of Causality

Other Experiments (Fermilab, Casimir, Neutron Interferometry, etc.) Predictions

Diverse Experimental Tests

Step 1: Fermilab Muon g-2

Prediction: Anomaly matching Fermilab data, \(\Delta a_\mu \approx 2.5 \times 10^{-9}\).

\[\Delta a_\mu \approx 2.5 \times 10^{-9}\]

Link to Zero: The Forbidden Number

Step 2: Casimir Polarization

Prediction: Spontaneous polarization from vacuum fluctuations, \(\Omega_{\text{QF}} = \frac{\kappa E_{\text{coll}}}{\epsilon^2}\).

\[\Omega_{\text{QF}} = \frac{\kappa E_{\text{coll}}}{\epsilon^2}\]

Link to Micro EPTs

Step 3: Neutron Interferometry Torsion

Prediction: Torsion signatures, \(\lambda_{\text{dB}} = \frac{h}{p} \left(1 + \frac{\ell_P^2}{\epsilon^2}\right)^{-1}\).

\[\lambda_{\text{dB}} = \frac{h}{p} \left(1 + \frac{\ell_P^2}{\epsilon^2}\right)^{-1}\]

Link to Wave Nature

Step 4: DNA Raman Spectra

Prediction: Fractal spectra, \(\Delta \lambda \propto \epsilon^{1/3}\).

\[\Delta \lambda \propto \epsilon^{1/3}\]

Link to Gauge Unification

Step 5: X-Ray Pulsations

Prediction: Pulsations from neutron stars, \(\nu_{\text{pulse}} \sim 10^2 \, \text{Hz}\).

\[\nu_{\text{pulse}} \sim 10^2 \, \text{Hz}\]

Chandra: \(f_{\text{QF}} = \kappa c^3/GM\)

Link to Neutron Star Reconfiguration

Step 6: Nernst Theorem Vacuum Stability

Prediction: Vacuum decay stability via Nernst Theorem, \(\Delta S = 0\) at absolute zero.

\[\Delta S = 0\]

Link to Nernst Theorem

External: IUPAC Nernst Theorem

Step 7: Ten Martini Proof

Prediction: Mathematical coherence of EPT, \(\int_{-\infty}^{\infty} \psi_{\text{EPT}}(x) dx = 1\).

\[\int_{-\infty}^{\infty} \psi_{\text{EPT}}(x) dx = 1\]

Link to Ten Martini Proof

External: arXiv Mathematical Models

Additional Proof Requests

Theoretical and Observational Challenges

Step 1: Cosmic River Validation

Prediction: Temporal flow structure pre-Big Bang, testable via cosmological simulations.

\[v_{\text{cosmic}} \propto \frac{\epsilon}{\ell_P}\]

Link to Cosmic River

External: Chaotic Inflation Theory

Step 2: Dark Matter Reinterpretation

Prediction: EPT-based dark matter, \(\rho_{\text{DM}} \propto \epsilon^{-2}\).

\[\rho_{\text{DM}} \propto \epsilon^{-2}\]

Link to Dark Matter

External: SDSS Data

Step 3: Superluminal Effects

Prediction: Superluminal phenomena, \(v > c\) in EPT limit.

\[v = c \cdot \left(1 + \frac{\epsilon}{\ell_P}\right)\]

Link to Superluminal

Step 4: Quantum Perception

Prediction: Observer effect on reality, \(\psi_{\text{obs}} \propto \hat{O}_{\text{QF}}\).

\[\psi_{\text{obs}} \propto \hat{O}_{\text{QF}}\]

Link to Quantum Perception

External: APS Double-Slit Experiment

Call to Action

Engage with QFunity

We invite physicists, cosmologists, and researchers to engage with these proof requests. Submit findings, critiques, or collaborations via our contact page or academic channels. Together, let us push the boundaries of scientific understanding.

Return to Hypotheses