JWST Discoveries and QFunity Theory

JWST Discoveries and QFunity’s theory

Overview of JWST Findings

The James Webb Space Telescope (JWST) has unveiled the Universe’s first billion years with stunning clarity. As reported by Adamo et al. (2025, Nat Astron), 1.5 years into its mission, JWST data is reshaping our understanding of early galaxies, massive black holes, and reionization. Key observations include:

  • Galaxies at \( z > 10 \) enriched with metals (Fe, C, O) before traditional stellar nucleosynthesis.
  • Massive black holes in early galaxies, challenging standard formation models.
  • Anisotropies in the cosmic microwave background linked to reionization sources.

These findings prompt a reevaluation of cosmic history, with unresolved questions driving future research.

QFunity Explanation: Pre-Temporal Micro-Bangs

QFunity, a fractal and torsion-based theory of everything, offers a novel interpretation of these observations through the lens of the pre-temporal space (EPT) and micro-bangs.

1. Origin of Primordial Heavy Metals

Standard cosmology attributes metals to stellar processes, but JWST detects them at \( z > 10 \). QFunity posits that micro-bangs from EPT produce heavy metals non-thermally:

\[ \mathcal{H}_{\text{pre}} = \int \left[ \hat{\mathbb{B}}_\epsilon, \hat{\mathbb{V}}_\epsilon \right] \Psi \, d^3x = \frac{\hbar}{\epsilon} \mathcal{R}_{\text{total}}, \]

Where:

  • \(\hat{\mathbb{B}}_\epsilon\): Torsion operator breaking EPT symmetry, creating energy bubbles \( E \sim \hbar/\epsilon \).
  • \(\hat{\mathbb{V}}_\epsilon\): Fractal potential with vibrations \(\omega_n \sim \epsilon^{-1}\), generating quark-antiquark pairs.
  • \(\mathcal{R}_{\text{total}}\): Total curvature driving metal synthesis.

These bubbles reach \( T \sim 10^{12} \, \text{K} \), enabling direct fusion:

\[ p + n + \pi^+ \to \, ^{56}\text{Fe} + \gamma. \]

JWST’s Fe/H \(\sim 10^{-4}\) at \( z \sim 15 \) matches this non-stellar origin.

2. Energy Bubbles and Symmetry Breaking

JWST’s cosmic microwave background fluctuations are relics of EPT bubbles:

\[ \delta T/T \sim \| \hat{\mathbb{B}}_\epsilon \Psi \|^2. \]

At scales \(\epsilon \sim 10^{-32} \, \text{m}\), QFunity predicts C, O, Fe via:

\[ \hat{\mathbb{V}}_\epsilon \Psi \to \text{quark-gluon states} \to \text{heavy nuclei}. \]

Temperature scales with fractal rotation:

\[ k_B T = \hbar \Omega_{\text{EPT}}, \quad \Omega_{\text{EPT}} = \sqrt{\mathcal{R}_{\text{total}}}. \]

For \( T \sim 10^{12} \, \text{K} \), \(\Omega_{\text{EPT}} \sim 10^{23} \, \text{rad/s}\).

3. Atemporal Symmetry Breaking

In EPT, rotation is a curvature projection:

\[ \Omega_{\text{EPT}} = \frac{1}{\epsilon^2} \sqrt{\frac{G \hbar}{c^3}}. \]

Symmetry breaking occurs at:

  • \(\epsilon \sim 10^{-18} \, \text{m}\): Electroweak (\(W^\pm, Z\)).
  • \(\epsilon \sim 10^{-15} \, \text{m}\): Hadronic (protons, neutrons).

JWST’s Fe/H \(\sim 10^{-4}\) aligns with:

\[ \frac{\text{Fe}}{\text{H}} \sim \exp\left(-\frac{\epsilon_{\text{hadron}}}{\epsilon_{\text{electroweak}}}\right). \]

4. Numerical Validation

Mass of Fe nuclei:

\[ m_{\text{Fe}} \approx \frac{\hbar}{\epsilon c^2} \sqrt{\mathcal{R}_{\text{total}}} \approx 9 \times 10^{-26} \, \text{kg}. \]

Critical temperature:

\[ T = \frac{\hbar \Omega_{\text{ EPT}}}{k_B} \approx 10^{12} \, \text{K}. \]

Predictions vs. JWST Observations

JWST Observation QFunity Prediction Status
Metals (Fe, C, O) at \( z > 10 \) Micro-bangs at \(\epsilon \sim 10^{-32} \, \text{m}\) Confirmed
Massive early galaxies Fractal \(\mathcal{R}_{\text{total}}\) acceleration To be tested
CMB anisotropies Echoes of \(\hat{\mathbb{B}}_\epsilon \Psi\) In agreement
← Back to All Solutions