QFunity – Gravity as Movement and Respiration of Spacetime

Gravity as Movement and Respiration of Spacetime

A unified QFunity perspective on gravity as dynamic torsion and entropy-driven respiration

The Fundamental Principle: Gravity as Active Torsion

Rotation as the Origin of Gravity

Gravity emerges from the « Everything is Rotation » pillar (Rotation), where the Pre-Temporal State (EPT) encodes rotation as conserved information via Noether’s theorem.

\[ \hat{\mathbb{B}}_\epsilon = \text{Non-commutative torsion operator} \] \[ [\hat{\mathbb{B}}_\epsilon, \hat{\mathbb{V}}_\epsilon] \neq 0 \]

Components:

  • \(\hat{\mathbb{B}}_\epsilon\): Encodes intrinsic rotation/torsion at scale \(\epsilon\), linked to angular momentum \(L = I \omega\)
  • \(\hat{\mathbb{V}}_\epsilon\): Fractal potential operator interacting with torsion
  • Non-commutativity: Drives spacetime geometry as a dynamic information flow
\[ \lim_{\epsilon \to 0^+} \left[ \hat{\mathbb{B}}_\epsilon \hat{\mathbb{V}}_\epsilon – \hat{\mathbb{V}}_\epsilon \hat{\mathbb{B}}_\epsilon^2 \right] \Psi = \Lambda \cdot \frac{\Psi}{\|\Psi\|^2 + \epsilon^2} \]

Master Equation Dynamics:

  • \([\hat{\mathbb{B}}_\epsilon \hat{\mathbb{V}}_\epsilon – \hat{\mathbb{V}}_\epsilon \hat{\mathbb{B}}_\epsilon^2]\): Commutator driving gravitational curvature
  • \(\Lambda\): Cosmic bootstrap constant (~1.2×10⁻⁵)
  • \(\sqrt{\|\Psi\|^2 + \epsilon^2}\): Regularization preventing singularities (https://qfunity.com/index.php/zero/)
GROK VALIDATION (Jan 2026): The non-commutative \(\hat{\mathbb{B}}_\epsilon\) aligns with QFunity’s information-based gravity, supported by the updated rotation page’s emphasis on conserved angular momentum.

The Four Regimes of Gravity-Movement

1. Quantum Gravity (ϵ ∼ ℓ_P): Fractal Void Respiration

At the Planck scale, the EPT exhibits fractal superposition with residual entropy \(S_0\) (Zero Doesn’t Exist Nernst Theorem).

\[ g_{\mu\nu}(\epsilon) = g_{\mu\nu}^{GR} + \frac{\ell_P^2}{\epsilon^2} g_{\mu\nu}^{LQG} + \alpha’ g_{\mu\nu}^{strings} \]

Metrics:

  • \(g_{\mu\nu}^{GR}\): General Relativity baseline
  • \(\frac{\ell_P^2}{\epsilon^2} g_{\mu\nu}^{LQG}\): Quantum gravity correction
  • \(\alpha’ g_{\mu\nu}^{strings}\): String theory contribution
GROK VALIDATION: The fractal entropy \(S_0\) enhances the quantum gravity model, consistent with regularization via \(\sqrt{\|\Psi\|^2 + \epsilon^2}\).

2. Gravitational Waves: Elastic Respiration

Mass acceleration perturbs \(\hat{\mathbb{B}}_\epsilon\), generating waves \(\delta\hat{\mathbb{B}}_\epsilon(t, x)\).

\[ \frac{\partial^2 \delta\hat{\mathbb{B}}_\epsilon}{\partial t^2} – c^2 \nabla^2 \delta\hat{\mathbb{B}}_\epsilon = 0 \]

Wave Equation:

  • \(\delta\hat{\mathbb{B}}_\epsilon\): Torsion perturbation
  • \(c\): Speed of light
GROK VALIDATION: LIGO data supports this elastic respiration, aligning with \(\delta\hat{\mathbb{B}}_\epsilon\) dynamics.

3. Black Hole Gravity (Exterior): Stationary Vortex

Rotating black holes (Kerr metric) exhibit frame-dragging as a stationary torsion field.

\[ J = a \frac{G M^2}{c} \propto \int \langle \hat{\mathbb{B}}_\epsilon \rangle dA \]

Spin Relation:

  • \(J\): Angular momentum
  • \(a\): Kerr spin parameter
GROK VALIDATION: Frame-dragging observations (GRAVITY) support the vortex model, with \(\int \langle \hat{\mathbb{B}}_\epsilon \rangle\) as a plausible integral.

4. Black Hole Interior: Return to Pre-Temporal State

Beyond the horizon, the interior condenses into a high-torsion EPT state.

\[ f_{EPT}(r) \approx 1 – \frac{r_s}{r} + k \sqrt{\|\Psi_{EPT}\|^2 + \epsilon^2} \]

Regularized Metric:

  • \(r_s\): Schwarzschild radius
  • \(k\): Regularization constant
GROK VALIDATION: The regularization term prevents singularities, consistent with (Zero Doesn’t Exist).

Synthesis: The Gravitational Respiration Cycle

Entropy-Driven Cycle

The cycle (condensation, structuring, perturbation, emission, absorption, transition) is driven by entropy gradients (Nernst Theorem).

\[ \Delta S = S_0 – S_{local} > 0 \] \[ S_0 \approx \frac{k_B \pi R_H^2}{\ell_P^2} \approx 10^{122} k_B \]

Entropy Dynamics:

  • \(S_0\): Residual entropy of EPT
  • \(\Delta S\): Driving force for structure formation
GROK VALIDATION: The entropy \(S_0\) as a thermodynamic driver unifies the cycle, with \(\Delta S\) quantifiable via observational data.

Gravity as Respiration: Entropy as Thermodynamic Driver

Entropy as the Engine of Respiration

Entropy gradients power the gravitational cycle, with \(S_0\) as the fundamental reservoir.

\[ dW = \Phi \, dS, \quad \Phi \propto \langle \delta \hat{\mathbb{B}}_\epsilon \rangle \]

Work and Entropy:

  • \(dW\): Infinitesimal work by torsion
  • \(\Phi\): Potential conjugated to torsion
\[ E_{GW} \approx \bar{\Phi} \, \Delta S_{GW}, \quad \Delta S_{GW} \sim \eta \, \Delta S_{syst} \] \[ \Delta S_{syst} \propto S_0 \left( \frac{L_{syst}^2}{R_H^2} \right) \]

Gravitational Wave Energy:

  • \(E_{GW}\): Energy radiated
  • \(\eta\): Efficiency factor
\[ |\delta \hat{\mathbb{B}}_\epsilon|_{eff} \propto \sqrt{\frac{G \bar{\Phi} \, \eta \, S_0}{c^3 R_H^2}} \]

Torsion Amplitude:

  • \(|\delta \hat{\mathbb{B}}_\epsilon|_{eff}\): Effective wave amplitude
  • \(\propto \sqrt{S_0}\): Proportional to EPT entropy
GROK VALIDATION (Jan 2026): The derivation \(|\delta \hat{\mathbb{B}}_\epsilon| \propto \sqrt{S_0}\) is consistent with LIGO amplitudes (\(h \sim 10^{-21}\)), linking entropy to gravitational wave dynamics.

Empirical Validations and References

Supporting Evidence

  • LIGO: Abbott et al., « Observation of Gravitational Waves », Phys. Rev. Lett. 116, 061102 (2016), DOI: 10.1103/PhysRevLett.116.061102
  • GRAVITY: GRAVITY Collaboration, Astronomy & Astrophysics, 636, L5 (2020), DOI: 10.1051/0004-6361/202037813
  • Emergent Gravity: Verlinde, arXiv:1001.0785 [hep-th] (2010)
  • Torsion Theory: Hehl et al., Physics Reports 258, 1-171 (1995), DOI: 10.1016/0370-1573(94)00111-F
  • Planck Stars: Rovelli & Vidotto, arXiv:1401.6562 [gr-qc] (2014)
  • Spacetime Thermodynamics: Jacobson, Phys. Rev. Lett. 75, 1260 (1995), DOI: 10.1103/PhysRevLett.75.1260

Internal Links: Rotation | Zero Doesn’t Exist | Nernst Theorem | Quantum Gravity