QFunity – Rotation: Information, Entropy, and Thermodynamic Evolution

Rotation: Information, Entropy

Rotation as the fundamental vector of conserved information

Everything is Rotation

The Master Equation of Rotational Unification

At the core of QFunity theory lies the fundamental principle that rotation governs all physical phenomena. This is expressed through our Master Equation:

\[ \lim_{\epsilon \to 0^+} \left[ \hat{\mathbb{B}}_\epsilon \hat{\mathbb{V}}_\epsilon – \hat{\mathbb{V}}_\epsilon \hat{\mathbb{B}}_\epsilon^2 \right] \Psi = \Lambda \cdot \frac{\Psi}{\|\Psi\|^2 + \epsilon^2} \]

Term-by-Term Explanation:

Left Side Components:

  • \(\hat{\mathbb{B}}_\epsilon\): Torsion operator encoding pre-temporal spin dynamics (microscopic rotation)
  • \(\hat{\mathbb{V}}_\epsilon\): Fractal potential operator governing spacetime structure
  • Commutator structure: Describes competition between spacetime curvature from torsion (\(\hat{\mathbb{B}}_\epsilon \hat{\mathbb{V}}_\epsilon\)) and fractal feedback effects (\(\hat{\mathbb{V}}_\epsilon \hat{\mathbb{B}}_\epsilon^2\))

Right Side Components:

  • \(\Lambda\): Cosmic bootstrap constant (dimensionless, ≈1.2×10⁻⁵) tying quantum torsion to cosmological constant
  • \(\frac{\Psi}{\|\Psi\|^2 + \epsilon^2}\): Wavefunction normalization ensuring no physical quantity reaches zero
  • \(\epsilon\): Observer’s scale parameter (minimal quantum rotation, \(\epsilon = \hbar/2\))

This equation unifies quantum measurement (\(\|\Psi\|^2\) term) with cosmology (\(\Lambda\) term) through rotational dynamics that vary with observer scale (\(\epsilon\)).

Microscopic Rotation: Quantum Torsion

At quantum scales, rotation manifests as intrinsic particle spin and spacetime torsion:

\[ \hat{\mathbb{B}}_\epsilon = \text{Non-commutative torsion field} \]

Properties:

  • Non-commutative: \(\hat{\mathbb{B}}_\epsilon \hat{\mathbb{V}}_\epsilon \neq \hat{\mathbb{V}}_\epsilon \hat{\mathbb{B}}_\epsilon\)
  • Scale-dependent: Behavior changes for observers at Planck scale (\(L_{obs} \sim l_P\)) vs macroscopic scales (\(L_{obs} \gg l_P\))
  • Pre-temporal origin: Emerges from rotational dynamics before conventional time

Cosmic Rotation: From Big Bang to Black Holes

Big Bang as Rotational Process

\[ \eta(t) = \frac{\mathcal{E}_{\text{EPT}}(t)}{\hbar} \cdot \int_{-\infty}^{t} \omega(\tau) e^{-i\frac{\mathcal{E}_{\text{Micro}}(\tau)}{\hbar}(t-\tau)} d\tau \]

Components:

  • \(\eta(t)\): Emergent spacetime curvature
  • \(\mathcal{E}_{\text{EPT}}(t)\): Pre-temporal energy density
  • \(\omega(\tau)\): Rotational frequency at time \(\tau\)
  • Integral: Memory effect of past rotational states

Non-Singular Black Holes

\[ \mathbf{R}_{\mu\nu} = \kappa \cdot \nabla_{\mu}\nabla_{\nu}\omega_{\text{rot}} \quad \text{with} \quad \omega_{\text{rot}} \neq 0 \, \text{at } r = 0 \]

Key Features:

  • \(\omega_{\text{rot}} \neq 0\): Finite rotation replaces singularity
  • \(\nabla_{\mu}\nabla_{\nu}\omega_{\text{rot}}\): Second covariant derivative of rotational velocity
  • \(\kappa\): Coupling constant for smooth horizon transition

Fractal Scaling of Rotation

Rotational patterns repeat across scales in a fractal manner, governed by:

\[ \hat{\mathbb{V}}_\epsilon \sim \| \Psi \|^{-1} \]

Fractal Potential Operator:

  • Inverse observer-scale normalization: Potential varies with measurement resolution
  • Contains (E8 × E8) symmetry-breaking terms: Connects to string theory framework
  • Generates dark matter: As topological defects from fractal structure

This fractal nature explains galaxy rotation curves without requiring WIMPs, through scale-invariant rotational dynamics.

Scale-Dependent Manifestation

The effective metric tensor shows how rotation unifies physics across scales:

\[ g_{\mu\nu}(\epsilon) = g_{\mu\nu}^{GR} + \frac{\ell_P^2}{\epsilon^2} g_{\mu\nu}^{\text{LQG}} + \alpha’ \cdot g_{\mu\nu}^{\text{strings}} \]

Scale Transitions:

  • Macroscopic (\(\epsilon \gg \ell_P\)): \(g_{\mu\nu}^{GR}\) dominates (General Relativity)
  • Quantum (\(\epsilon \sim \ell_P\)): \(\frac{\ell_P^2}{\epsilon^2} g_{\mu\nu}^{\text{LQG}}\) adds Loop Quantum Gravity corrections
  • String (\(\epsilon \sim \sqrt{\alpha’}\)): \(\alpha’ \cdot g_{\mu\nu}^{\text{strings}}\) introduces string theory components

The Non-Zero Universe

Rotational continuity ensures no physical quantity reaches absolute zero:

\[ \frac{\Psi}{\|\Psi\|^2 + \epsilon^2} \]

Components:

  • \(\|\Psi\|^2\): Quantum probability density (observer-dependent)
  • \(\epsilon^2\): Regularization term preventing singularities
  • Result: Always non-zero, maintaining rotational continuum

This principle prevents singularities in black holes and the Big Bang, replacing them with finite rotational structures.

Rotation as Fundamental Vector of Information

Principle: Noether’s Theorem and Conservation

The universal link between rotation and conserved information stems from Noether’s theorem: rotational symmetry implies conservation of angular momentum. This conserved quantity is primordial information encoded in the physical state.

Rotation and Information Across Scales

Scale / Object Manifestation of Rotation Conserved Quantity (Information) Storage / Calculation
Elementary Particle (Quark, Electron) Intrinsic quantum spin Spin quantum number \( s \) and angular momentum \( S = \hbar \sqrt{s(s+1)} \) Discrete, indelible quantum memory
Classical Body (Earth, Sun) Macroscopic rotation Orbital angular momentum \( L = I \omega \) Continuous, encoded in mass distribution and velocity
Black Hole (Accretion Disk & Ergosphere) Frame-dragging of spacetime Black hole spin \( J = a G M^2 / c \) Engraved in Kerr metric geometry
Universe / EPT (QFunity) Primordial torsion and fractal « breathing » Operator \( \hat{B}_\epsilon \) and structured vacuum \( T^{\text{EPT}}_{\mu\nu} \) Encoded in EPT state \( \Psi_{\text{EPT}} \)

In QFunity, the torsion operator \( \hat{B}_\epsilon \) is the primitive carrier of rotational information across all scales.

Geometric Memory in General Relativity: Kerr Black Holes

The Kerr metric proves that rotation is indelibly encoded in spacetime geometry. The « no-hair » theorem states that a black hole is fully described by mass \( M \), charge \( Q \), and angular momentum \( J \). Rotation adds information, increasing horizon entropy (Bekenstein-Hawking).

\[ S = \frac{k_B A}{4 \ell_P^2}, \quad A = 4\pi \left( r_+^2 + \frac{J^2}{M^2 c^2} \right) \]

QFunity Extension: Rotational Information in the EPT

The non-commutativity \( [\hat{B}_\epsilon, \hat{V}_\epsilon] \) acts as a conservation rule for rotational information. All observed rotations (quark spin, planetary orbits, black hole spin) are scale-specific projections of primordial torsion in the pre-temporal state \( \Psi_{\text{EPT}} \).

Rotation, Information, and Thermodynamics

Landauer’s Principle and the Master Equation

Information processing has a thermodynamic cost: erasing 1 bit dissipates at least \( k_B T \ln 2 \) heat (Landauer 1961). In QFunity, interactions altering rotational information (coupling of angular momenta) must respect this bound.

The regularization \( \sqrt{\|\Psi\|^2 + \epsilon^2} \) ensures irreversible evolution of \( \Psi \) respects a minimal dissipation, generalizing Landauer across scales.

Inter-Scale Communication of Rotational Information

Information flows between scales via physical couplings:

  • Spin-orbit coupling (quantum → classical)
  • Lense-Thirring effect (classical rotation → spacetime geometry)
  • Accretion and frame-dragging (stellar → black hole)

In QFunity, the scale parameter \( \epsilon \) controls the dominant channel, with decoherence attenuating fine details as scale increases.

Proposed Research Program for QFunity

Future extensions could define scale-dependent information entropy:

\[ S_{\text{info}}(\epsilon) = -k_B \operatorname{Tr} [\rho_\epsilon \ln \rho_\epsilon] \]

And a generalized second law incorporating rotational information variation.

References and Further Reading

Internal links: Hypotheses | Quantum Gravity | Einstein-2