Fractal Gauge Symmetry Convergence

QFunity Framework: Partanen-Tulkki’s 4 U(1) gauge theory emerges as a local projection of QFunity’s E₈×E₈ fractal symmetry through scale-dependent coupling κ(L).

1. Core Unification Mechanism

𝐈g ≡ ℱ(L) = e−L/λGR + P2L2 + ℓP2 + s2L2 + ℓs2

Where the spacetime dimension field 𝐈g from Partanen-Tulkki maps to QFunity’s fractal filter ℱ(L).

2. Five-Phase Gauge Convergence

Phase 1: U(1) Embedding

U(1)4 ⊂ E₈ × E₈ via κ(L) = Tr(ΩQF ∧ ★ΩQF)∫dL/L

Phase 3: Charge Emergence

αg = Gme2ħc = κ(L)2 at L = ħ/mec

3. Comparative Framework

Feature Partanen-Tulkki QFunity
Gravity Origin 4 U(1) gauge fields E₈×E₈ fractal torsion
Metric Status Derived from 𝐈g Emerges from 𝒥(L,t)/L³
Renormalization BRST invariance Scale cutoff ℱ(L)

4. QFunity Predictions vs Standard Model

Standard Model + GR
• Fundamental metric tensor
• Non-renormalizable gravity
• No fractal charge structure
QFunity Framework
• Emergent metric from ΩQF
• Finite κ(L) at all scales
• Fractal charge quantization

5. Experimental Tests

Δtecho2GMc3 (1 + κ(L)ρ2)

Detectable signatures:

  • CMB anomalies: From Γ(L)·δ(L-Lc)·eiωt critical events
  • 70 MeV photons: Micro-fracture events in electron clouds
  • Fractal Raman spectra: In DNA via 𝒲(L,t) vibrations

6. Unification Extension

κ(L) = \begin{cases} \sqrt{\varepsilon_0 G} & (\text{gravity}) \\ \sqrt{\alpha} & (\text{EM}) \\ \alpha_s & (\text{strong}) \end{cases}

QFunity extends Partanen-Tulkki’s framework to all fundamental forces through scale-dependent coupling.

← Back to All Solutions